Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Results Chem ; 72024 Jan.
Article in English | MEDLINE | ID: mdl-38560090

ABSTRACT

Phospholipase D3 (PLD3) and D4 (PLD4) are endolysosomal exonucleases of ssDNA and ssRNA that regulate innate immunity. Polymorphisms of these enzymes are correlated with numerous human diseases, including Alzheimer's, rheumatoid arthritis, and systemic sclerosis. Pharmacological modulation of these immunoregulatory proteins may yield novel immunotherapies and adjuvants. A previous study reported a high-throughput screen (N = 17,952) that discovered a PLD3-selective activator and inhibitor, as well as a nonselective inhibitor, but failed to identify selective modulators of PLD4. However, modulators selective for PLD4 are therapeutically pertinent, since recent reports have shown that regulating this protein has direct implications in cancer and autoimmune diseases. Furthermore, the high expression of PLD4 in dendritic and myeloid cells, in comparison to the broader expression of PLD3, presents the opportunity for a cell-targeted immunotherapy. Here, we describe screening of an expended diversity library (N = 45,760) with an improved platform and report the discovery of one inhibitor and three activators selective for PLD4. Furthermore, kinetic modeling and structural analysis suggest mechanistic differences in the modulation of these hits. These findings further establish the utility of this screening platform and provide a set of chemical scaffolds to guide future small-molecule development for this novel immunoregulator target.

2.
Bioorg Med Chem Lett ; 49: 128293, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34332037

ABSTRACT

PLD3 and PLD4 have recently been revealed to be endosomal exonucleases that regulate the innate immune response by digesting the ligands of nucleic acid sensors. These enzymes can suppress RNA and DNA innate immune sensors like toll-like receptor 9, and PLD4-deficent mice exhibit inflammatory disease. Targeting these immunoregulatory enzymes presents an opportunity to indirectly regulate innate immune nucleic acid sensors that could yield immunotherapies, adjuvants, and nucleic acid drug stabilizers. To aid in delineating the therapeutic potential of these targets, we have developed a high-throughput fluorescence enzymatic assay to identify modulators of PLD3 and PLD4. Screening of a diversity library (N = 17952) yielded preferential inhibitors of PLD3 and PLD4 in addition to a PLD3 selective activator. The modulation models of these compounds were delineated by kinetic analysis. This work presents an inexpensive and simple method to identify modulators of these immunoregulatory exonucleases.


Subject(s)
Enzyme Activators/chemistry , Enzyme Inhibitors/chemistry , Exodeoxyribonucleases/antagonists & inhibitors , Phospholipase D/antagonists & inhibitors , Enzyme Assays , Fluorescent Dyes/chemistry , High-Throughput Screening Assays , Humans , Nitrophenols/chemistry , Thymine Nucleotides/chemistry , Umbelliferones/chemistry
3.
Bioorg Med Chem ; 42: 116246, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34130216

ABSTRACT

We report the discovery of a fluorescent small molecule probe. This probe exhibits an emission increase in the presence of the oncoprotein MYC that can be attenuated by a competing inhibitor. Hydrogen-deuterium exchange mass spectrometry analysis, rationalized by induced-fit docking, suggests it binds to the "coiled-coil" region of the leucine zipper domain. Point mutations of this site produced functional MYC constructs resistant to inhibition in an oncogenic transformation assay by compounds that displace the probe. Utilizing this probe, we have developed a high-throughput assay to identify MYC inhibitor scaffolds. Screening of a diversity library (N = 1408, 384-well) and a library of pharmacologically active compounds (N = 1280, 1536-well) yielded molecules with greater drug-like properties than the probe. One lead is a potent inhibitor of oncogenic transformation and is specific for MYC relative to resistant mutants and transformation-inducing oncogenes. This method is simple, inexpensive, and does not require protein modification, DNA binding, or the dimer partner MAX. This assay presents an opportunity for MYC inhibition researchers to discover unique scaffolds.


Subject(s)
Drug Development , Fluorescent Dyes/pharmacology , High-Throughput Screening Assays , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Binding Sites/drug effects , Dose-Response Relationship, Drug , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Humans , Molecular Structure , Proto-Oncogene Proteins c-myc/metabolism , Structure-Activity Relationship
4.
Cancer Res ; 79(9): 2208-2219, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30885981

ABSTRACT

Choroid plexus carcinoma (CPC) is a rare brain tumor that occurs most commonly in very young children and has a dismal prognosis despite intensive therapy. Improved outcomes for patients with CPC depend on a deeper understanding of the mechanisms underlying the disease. Here we developed transgenic models of CPCs by activating the Myc oncogene and deleting the Trp53 tumor suppressor gene in murine neural stem cells or progenitors. Murine CPC resembled their human counterparts at a histologic level, and like the hypodiploid subset of human CPC, exhibited multiple whole-chromosome losses, particularly of chromosomes 8, 12, and 19. Analysis of murine and human CPC gene expression profiles and copy number changes revealed altered expression of genes involved in cell cycle, DNA damage response, and cilium function. High-throughput drug screening identified small molecule inhibitors that decreased the viability of CPC. These models will be valuable tools for understanding the biology of choroid plexus tumors and for testing novel approaches to therapy. SIGNIFICANCE: This study describes new mouse models of choroid plexus carcinoma and uses them to investigate the biology and therapeutic responsiveness of this highly malignant pediatric brain tumor.


Subject(s)
Carcinoma/pathology , Choroid Plexus Neoplasms/pathology , Neural Stem Cells/pathology , Proto-Oncogene Proteins c-myc/physiology , Small Molecule Libraries/pharmacology , Tumor Suppressor Protein p53/physiology , Animals , Antineoplastic Agents/pharmacology , Carcinoma/drug therapy , Carcinoma/genetics , Choroid Plexus Neoplasms/drug therapy , Choroid Plexus Neoplasms/genetics , High-Throughput Screening Assays , Mice , Mice, Knockout , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Tumor Cells, Cultured
5.
ACS Infect Dis ; 4(10): 1423-1431, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30141624

ABSTRACT

The parasitic disease onchocerciasis is the second leading cause of preventable blindness, afflicting more than 18 million people worldwide. Despite an available treatment, ivermectin, and control efforts by the World Health Organization, onchocerciasis remains a burden in many regions. With an estimated 120 million people living in areas at risk of infection, efforts are now shifting from prevention to surveillance and elimination. The lack of a robust, point-of-care diagnostic for an active Onchocerca infection has been a limiting factor in these efforts. Previously, we reported the discovery of the biomarker N-acetyl-tyramine- O-glucuronide (NATOG) in human urine samples and its ability to track treatment progression between medicated patients relative to placebo; we also established its capability to monitor disease burden in a jird model. NATOG is a human-produced metabolite of tyramine, which itself is produced as a nematode neurotransmitter. The ability of NATOG to distinguish between active and past infection overcomes the limitations of antibody biomarkers and PCR methodologies. Lateral flow immunoassay (LFIA) diagnostics offer the versatility and simplicity to be employed in the field and are inexpensive enough to be utilized in large-scale screening efforts. Herein, we report the development and assessment of a NATOG-based urine LFIA for onchocerciasis, which accurately identified 85% of analyzed patient samples ( N = 27).


Subject(s)
Immunoassay/methods , Neglected Diseases/diagnosis , Neglected Diseases/urine , Onchocerca volvulus , Onchocerciasis/diagnosis , Onchocerciasis/urine , Tyramine/analogs & derivatives , Animals , Antibodies, Monoclonal, Murine-Derived/immunology , Biomarkers/urine , Data Accuracy , Gold/chemistry , Humans , Mass Spectrometry , Metal Nanoparticles/chemistry , Neglected Diseases/prevention & control , Onchocerciasis/prevention & control , Point-of-Care Testing , Surface Plasmon Resonance , Tyramine/immunology , Tyramine/urine
6.
Bioorg Med Chem ; 26(14): 4234-4239, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30037753

ABSTRACT

MYC is a key transcriptional regulator involved in cellular proliferation and has established roles in transcriptional elongation and initiation, microRNA regulation, apoptosis, and pluripotency. Despite this prevalence, functional chemical probes of MYC function at the protein level have been limited. Previously, we discovered 5a, that binds to MYC with potency and specificity, downregulates the transcriptional activities of MYC and shows efficacy in vivo. However, this scaffold posed intrinsic pharmacokinetic liabilities, namely, poor solubility that precluded biophysical interrogation. Here, we developed a screening platform based on field-effect transistor analysis (Bio-FET), surface plasmon resonance (SPR), and a microtumor formation assay to analyze a series of new compounds aimed at improving these properties. This blind SAR campaign has produced a new lead compound of significantly increased in vivo stability and solubility for a 40-fold increase in exposure. This probe represents a significant advancement that will not only enable biophysical characterization of this interaction and further SAR, but also contribute to advances in understanding of MYC biology.


Subject(s)
Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Pyridines/pharmacology , Pyrimidines/pharmacology , Dose-Response Relationship, Drug , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Protein Binding/drug effects , Proto-Oncogene Proteins c-myc/metabolism , Pyridines/chemical synthesis , Pyridines/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Solubility , Structure-Activity Relationship , Surface Plasmon Resonance
7.
Bioorg Med Chem Lett ; 27(15): 3436-3440, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28600214

ABSTRACT

The Neglected Tropical Disease onchocerciasis is a parasitic disease. Despite many control programmes by the World Health Organization (WHO), large communities in West and Central Africa are still affected. Besides logistic challenges during biannual mass drug administration, the lack of a robust, point-of-care diagnostic is limiting successful eradication of onchocerciasis. Towards the implementation of a non-invasive and point-of-care diagnostic, we have recently reported the discovery of the biomarker N-acetyltyramine-O-glucuronide (NATOG) in human urine samples using a metabolomics-mining approach. NATOG's biomarker value was enhanced during an investigation in a rodent model. Herein, we further detail the specificity of NATOG in active onchocerciasis infections as well as the co-infecting parasites Loa loa and Mansonella perstans. Our results measured by liquid chromatography coupled with mass spectrometry (LC-MS) reveal elevated NATOG values in mono- and co-infection samples only in the presence of the nematode Onchocerca volvulus. Metabolic pathway investigation of l-tyrosine/tyramine in all investigated nematodes uncovered an important link between the endosymbiotic bacterium Wolbachia and O. volvulus for the biosynthesis of NATOG. Based on these extended studies, we suggest NATOG as a biomarker for tracking active onchocerciasis infections and provide a threshold concentration value of NATOG for future diagnostic tool development.


Subject(s)
Glucuronides/urine , Mass Spectrometry/methods , Neglected Diseases/urine , Onchocerca volvulus/isolation & purification , Onchocerciasis/urine , Tyramine/analogs & derivatives , Animals , Biomarkers/urine , Chromatography, Liquid/methods , Glucuronides/metabolism , Humans , Limit of Detection , Metabolomics/methods , Neglected Diseases/metabolism , Onchocerca volvulus/metabolism , Onchocerciasis/metabolism , Tyramine/metabolism , Tyramine/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...